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Abstract—In the past years, several methods
combining FDTD-like algorithms and wavelets have
been developed in order to reduce simulation times.
We present a method that directly transforms
Yee’s three-dimensional FDTD-algorithm into the
wavelet domain at arbitrary scale. We derive an an-
alytic and stable multigrid-like method and present
simulation results.

I. INTRODUCTION

Simulation algorithms like the FDTD-method [1] en-
able researchers and developers to analyse the electro-
magnetic properties of waveguides, antennas and other
objects. Unfortunately, these objects sometimes have
to be discretized very fine in time and space in or-
der to get results of reasonable precision. Mostly the
small discretization steps are necessary only at edges
and similar zones where field components have high
gradients. Several multigrid methods have been de-
rived which allow to limit the small discretization steps
to the problematic regions. These methods often lack
numerical stability.

Another approach is to take advantage of compres-
sion properties of wavelet transforms [2] which are very
efficient for image compressions. The wavelet anal-
ysis allows to observe data (functions, singals, etc.)
on different scales (resolutions). Omitting “unimpor-
tant” details and preserving the “important” ones in
some regions leads to a compression which, in some
aspects, is similar to multigrid compression. We show
how this can be incorporated into the FDTD algorithm
and that this approach leads to an analytic and stable
multigrid-like method. Furthermore, we can show that
our method can be applied not only to the FDTD al-
gorithm, but to every linear algortihm (TLM [3] and
MRTD [4], e.g.).

Our first approach presented in [5] was based on
matrix-vector-multiplications: The three-dimensional
fields and structure data (dielectric constants, bound-
aries) were regarded as different sets of vectors. Then,
matrices known from the wavelet-based multiresolu-
tion analysis could be used to transform the fields and

structure data into the wavelet domain. This method
is relatively easy to implement. Unfortunately, inho-
mogeneities require dissections of the structure data
into sub-homogeneous parts and the implementation
of masking matrices. Although all matrices are sparse
inefficiencies can occur due to the increasing number of
dissections necessary for an increasing number of inho-
mogeneities. In [5] we discussed these difficulties and
announced the development of another approach which
we now want to present.

I1. THEORY

On a cartesian mesh with Yee-cells at discrete points
addressed with the integer triple (4,7, k) the relations
between all field components look similar to the follow-
ing one:
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with the constants cf = and ¢; * incorporating time step
width and material properties at (i,4,k). Ay and Az
are the space steps in y- and z-direction, n is the num-
ber of the time step. All operations in equation (1) are
linear and can hence be expressed with linear opera-
tors.

In general, we consider functions of the form

9u(r) =33 @ fulr () (2)

where p and v denote components of the fields g and
f, r points to an element of the discretized space and
¢ denotes a factor. In operational form and for all
components y, v at all points r equation (2) can be
written as

G=0F, ®3)
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where O is a linear operator transforming field F to
field G. Extending Yee’s method with further linear
algorithms (Berenger’s PML or Mur’s boundary con-
ditions, e.g., [6]) and applying the notation of equation
(3) leads to

HH = OYHE 4 Ofen, (4)
EMt = OFE™ + OEH™ 3, (5)

where all operators are linear. We can thus restrict our
further considerations to equation (3).

The wavelet transform, especially multi resolution
analysis (MRA), is linear, too. For one-dimensional
signals v, a matrix P = P%J enables to transform
the signal vector from scale 0 (“fine”=original scale)
into the wavelet domains up to scale J (“coarse” scale)
applying a matrix-vector multiplication v - P. This
matrix can simply be extended to an operator P%’
that performs the one-dimensional wavelet transform
for a three-dimensional vector field. An operator P for
a wavelet transform to all directions is then

P = IPO,J,fPO,J,,rPO,Jz , (6)

and its inverse operator will be denoted Q. The wavelet
transform of equation (3) then results in

¢=0F, (n
with
¢=PG, F=PF, O=POQ. (8)

In the same way equations (4) and (5) can be trans-
formed.

In [5] we performed the realisation of equation (7),
especially the realisation of the operator O, with
matrix-vector multiplications as mentioned above. Qur
new approach uses the direct concatenation of opera-
tors with the help of equation (2): Each operator is
defined by its factor- and vector-components c}, , (r)
and r}, ,(r). Concatenating an operator A ( 4c}; ,(r),
aTh (r) ) with operator B ( ¢}, ,(r), o7}, ,(r) ) leads
to operator C = AB ( ¢}, (), ¢, »(r)). In general,
the principle of concatening the two operators belongs
to procedure of writing down an operation F = BH
in the form of equation (2) and inserting the resulting
equation into equation (2).

It is clear that this procedure can lead to a num-
ber of non-vanishing factors ;¢ that is higher than the
sum of the factors ,c and yc. In such case, the direct
implementation of equation (7), or the transformed

equations of (4) and (5), respectively, increases the nu-
merical effort during the simulation. Now, we have to
take advantage of the compression properties of wavelet
transforms: If a priori is known or assumed that the
signals have rather slow variations in most regions and
high variations only in a few regions, then a detail grid
can be used to reduce the transformed operators. The
following steps are necessary and will explain what we
mean with detail grid:

1. Choose for the simulation domain of interest where
you want to have more details during the simula-
tion (similar to subgridding in multigrid methods).

2. Define an operator A that keeps the field in the
detail regions and omits the field in the rest.

3. Transform the operator into the wavelet domain:
A=PAQ.

4. Define an operator B that keeps the (transformed)
field wherever A leads to (in general) non-zero val-
ues. Let B omit values elsewhere. B will then be
a kind of masking operator for the (transformed)
details.

5. Define an operator C that keeps the transformed
field on the coarsest scale, namely the so-called V-
space at scale J = (Jz, Jy, J;). Let C omit values
elsewhere.

6. Finally, define an operator ’Q that keeps the trans-
formed field wherever B or C keep the field. Let D
omit values elsewhere.

This procedure leads to a kind of multigrid filter. D
will be called the detail grid operator. We can now use
D to approximate equation (7) to

¢=0F, 9)
with
G=DPg, F=DPF, O=DP0QD. (10)

We can proof that this approach preserves the stability
of the FDTD algorithm, if applied to the equations (4)
and (5).

ITI. SIMULATION RESULTS

To validate our approach we first simulated a rectan-
gular waveguide with a dielectric post as inhomogene-
ity (Fig. 1) using the standard FDTD-method. At the
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Fig. 1. Simulated structure: air-filled rectangular waveguid with
dielectric post (¢ = 8.2). All dimensions are in mm.

interfaces of the waveguide we placed a Berenger PML
as boundary condition. The waveguide was excited
with a gaussian TEjg-impuls. We thus were able to
reduce the three-dimensional problem to two dimen-
sions. The number of timesteps of each simulation
was calculated to simulate a physical time of 17.5ns.
Fig. 2 shows the simulation results for [s11] for two
different space discretizations. Furthermore, measure-
ment results [7] for a very similar structure (dielectric
post width 12mm instead of 12.03mm) are shown. We
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Fig. 2. FDTD simulation results: — for Az ~ 0.6mm, Az =
0.6mm. - ~ - for Az & 1.2mm, Az = 1.2mm. Measurements for
gimilar structure: x.

chose to apply our algorithm to the FDTD-operators
resulting from the finer discretization. The detail grid
was set to cover both PMLs and the dielectric post
(plus two elements on each side) over the full cross sec-

tion. In Fig. 3 we show the results for different scales
and different wavelets. As wavelet functions we used
the “standard” Daubechies functions Dy (identical to
Haar-basis) and D;. Table 1 shows the simulation
times for all presented simulations.  Further exper-
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Fig. 3. — : identical to Fig. 2. Simulation results after trans-
formation: + : (Jz,Jz) = (0,1), Dy-basis; x : (Jz,Jz) = (0,2),
Ds-basis; - - - : (Jz, Jz) = (1,1), Dy-basis.
| Jo | J: [ A/mm [ Wavelet | Time/s |

0 0 1.2 -~ 5.5

0 0 0.6 - 36.3

011 0.6 D, 25.8

01 2 0.6 D, 32.8

1 {1 0.6 Dy 21.7

Table 1. Simulation times for different space discretizations,
scales (Jz = J; = 0 is pure FDTD) and Daubechies functions.

iments with higher scales and/or Daubechies wavelets
of higher order showed that calculation times can easily
exceed those of pure FDTD simulations. The proper
choice of the detail grid has also great influence on the
precision of the results. Nevertheless, we were able to
show that our approach leads to reasonable results and
is able to save simulation time.

IV. CONCLUSIONS

We presented a method that allows to derive
multigrid-like variations of linear algorithms and hence
allows to extend well-known and established simula-
tion methods to new classes of problems. We demon-
strated this in combination with the FDTD method.
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For this case, we can also proof the maintenance of
numerical stability. Regarding compression rates for
one-dimensional signals and those for images accessible
with multi resolution analysis clearly show that MRA
techniques gain importance with increasing number of
dimensions and size. But despite the “unbalanced”
geometry of our test structure we could demonstrate
the validity of our approach and its potential to reduce
simulation times. Therefore, we will soon analyze prob-
lems that fit better in the scheme mentioned above. We
are convinced that our method can play an important
role on large-scale problems.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic media,”
IEEE Antennas and Propagation, vol. 14, no. 5, pp. 302-
307, May 1966.

[2] A. K. Louis, P. Maa8, and A. Rieder, Wavelets, Teubner,
Stuttgart, 1994.

[3] P. B. Johns, “A symmetrical condensed node for the TLM
method,” IEEE Transactions on Microwave Theory and
Techniques, vol. 35, no. 4, pp. 370-377, Apr. 1987.

[4] M. Krumpholz and L. P. B. Katehi, “MRTD: New time-
domain schemes based on multiresolution analysis,” IEEE
Transactions on Microwave Theory and Techniques, vol. 44,
no. 4, pp. 555-571, Apr. 1996.

[5] M. Walter and 1. Wolff, “An algorithm for realizing Yee’s
FDTD-method in the wavelet domain,” in Microwave Sym-
posium Digest. IEEE MTT-S International, Anaheim, Cali-
fornia, June 1999, Session WEF1-15.

6] A. Taflove, Computational Electromagnetics: The Finite-
Difference Time-Domain Method, Artech House, Boston,
1995.

[7] J.-W. Tao and H. Baudrand, “Multimodal variational anal-
ysis of uniaxial waveguide discontinuities,” IJIEFE Trans-
actions on Microwave Theory and Technigues, vol. 39, no.
3, pp. 506-516, 1991.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



	IMS 2001
	Return to Main Menu


